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We suggest an approach to the quantization problem of two compatible Poisson brackets in 
the case when one of them is associated with a solution of the classical Yang-Baxter equation. 
We show that the quantization scheme (a Poisson bracket + an associate algebra, quantizing 
this bracket in the spirit of the Berezin-Lichnerovicz deformation quantization + its represen- 
tation in a Hilbert space) has to be enlarged. We represent the deformation algebras, quantiz- 
ing the “R-matrix” brackets, in a space with an S-symmetric pairing, where S is a solution of 
the corresponding quantum Yang-Baxter equation. An example of quantization of an “exotic” 
harmonic oscillator is discussed. 
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An R-matrix is an invertible operator R : V@*+ I@* satisfying the quantum 
Yang-Baxter equation (QYBE) 

R ‘2R 13R23=R23R 13R 12 

Here R”=R@id etc. and V is a finite- (or infinite-)dimensional linear space 
over the field k=IR or 62 If R= CPS, where CJ is the permutation a( v1 @‘v2) =u2@ 
uI, V;E V, then QYBE can be rewritten as follows: 

(S&d) (id@S) (S&d) = (id@?) (S@id) (id@S) . (0.1) 

Thus, an R-matrix in the form (0.1) gives a “local” representation of the braid 
group. Henceforth we call an operator S satisfying (0.1) a YB operator. And we 
call a YB operator a symmetry if it satisfies the “unitarity” condition S2 = id (or 
R’2.R2’=id,whereR2’=cR’2,forR). 

A classical analogue of this object is a “classical R-matrix*‘, i.e. an operator 
R : V@2-,V’=2 satisfying the equation 
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(R,R)=[R’2,R’q+[R”,R23]+[R’3,R23]=0. (0.2) 

The unitarity condition for this operator has the form R I2 + R 2’ = 0. R is usu- 
ally assumed to be an element of A 20, where 6 is a Lie algebra and (0.2) is inter- 
preted as a relation in (BOk* 1) * 3. For a given representation 9 of the Lie algebra 
6 the operator ((oC3q~)R is a classical R-matrix in the sense described above. 

We fix a Lie algebra (5 and interpret R as an element of A26 Consider a rep- 
resentation ~1 of the Lie algebra 6 in the space Der(M) of smooth vector fields 
on a smooth manifold A4 and a bilinear operator 

Here and below ,U denotes the “usual” multiplication. Since (v@@~v) (R, R) is 
the Schouten bracket of the bivector ( yl@q)R with itself, (0.2) provides a suffi- 
cient (but not necessary) condition for this bilinear operation to define a Poisson 
bracket. 

If G is a Lie group, 6 is the corresponding Lie algebra and v, is the representa- 
tion of 8 by left- (or right-)invariant fields on G, then we get a left- (or right-) 
invariant Poisson bracket (defined in ref. [ 1 ] ), and if r$r is the adjoint represen- 
tation on G or 6* then we get another pair of brackets introduced in ref. [ 21 (the 
bracket on 6* was independently introduced by Magry ). 

We do not consider here the Hamilton-Lie bracket (in the terminology of ref. 
[ 1 ] ), which is the difference between the above-mentioned left- and right-invar- 
iant brackets and which can be generalized to the case when the tensor (R, R) is 
G-invariant. We would only like to stress the fact that quantization of this bracket 
leads to the so-called quantum groups. 

Let { , } be a Poisson bracket on a smooth manifold M and a, be a representa- 
tion of the Lie algebra 8 in the space Ham (M, { , } ) of Hamiltonian vector fields. 
Then the Poisson brackets { , }R and { , } form a Poisson pair, i.e., any linear 
combination { , }o,b= a{ , } -l-b{ , }R is a Poisson bracket. 

In this paper we construct a simultaneous quantization of this family of Pois- 
son brackets. It should be emphasized that we consider the quantization of a 
Poisson bracket { , } as a deformation algebra equipped with an associative 
multiplication 

f@g+f*d!, f;g~c"(w, 
depending on the parameter fi and satisfying the “correspondence principle” to- 
gether with a representation of this algebra in a linear space V. 

We show that, if the algebra quantizing the initial bracket { , } is represented 
by self-adjoint operators in a Hilbert space (substituting ifi instead of fi in the 
correspondence principle), then it turns out to be natural to represent the alge- 
bras quantizing the other brackets { , }0,1, in the same linear space but equipped 
with deformed (non-symmetric) pairings. Consider the symplectic two-form 52 
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on M. Let L2 (A4, Q”) (n=dim M/2) be the Hilbert space where the quantizing 
algebra of the initial Poisson brackets is represented. Then the linear term of the 
deformation of the Hilbert pairing is J g g}&” (up to a factor). Here and below 
we assume that all functions used in integrations decrease rapidly towards infin- 
ity and all integrals are well defined. 

Note that the functionalf-,J$2” is a central functional on the Poisson algebra 
with the bracket { , }, i.e., JV; g}Q”=O (for anyfand g). For degenerate brackets 
(the brackets { , )o,b are usually degenerate) central functionals do not exist. So 
there are no central functionals on the algebras quantizing these brackets. We 
construct an S-trace and an S-symmetric pairing on these algebras. Here 
s : pm?+ p2. is the symmetry quantizing the initial classical R-matrix R. These 
objects are the results of deformation of the initial trace and corresponding pairing. 

Note that an S-trace arises naturally in the theory of monoidal quasi-tensor 
categories (see ref. [ 31). Here we confine ourselves to some special objects of 
such a category only, so we do not use the general category framework. A more 
general approach includes quasi-tensor categories with non-trivial associativity 
morphisms. But it should be emphasized that such categories are necessary to 
apply our scheme to quantization of some other brackets. This situation will be 
studied elsewhere. 

The conjugation operator in the operator space is also deformed together with 
the deformation of pairing. The conjugation A-+,4* constructed below is an in- 
volutive operator which does not satisfy the condition (A.B)*=B**A* but it sat- 
isfies an analogue of this condition (see section 3). This is a crucial point of our 
construction. In order to quantize some degenerate Poisson brackets (namely the 
R-matrix Poisson brackets) we need to enlarge the quantization scheme and to 
generalize the trace, the pairing and the conjugation operator to the S-trace, the 
S-pairing and the S-conjugation, respectively. 

This paper is organized as follows. In the first two sections we construct the R- 
matrix Poisson bracket and the deformation algebras quantizing the brackets 
{ , }o.6. In section 3 we present a scheme of “S-quantum mechanics”. 

It should be noted that this scheme includes not only “quasiclassical” symme- 
tries S (arising in the quantization of classical R-matrices) but also general YB 
symmetries (the existence of non-quasiclassical symmetries was shown in ref. 
[ 41). In section 4 we show that the quasiclassical objects constructed in section 
2 satisfy the requirements of the scheme proposed in section 3. 

The final section 5 contains an important example - an “S-quantum harmonic 
oscillator”. Here we do not confine ourselves to the framework of the quasiclas- 
sical situation. The main purpose of this example is to demonstrate that the sta- 
tistical sum of the energy operator depends on the Poincare series connected with 
the symmetry S. Note that the relevant statistics differs from both the Bose-Ein- 
stein and the Fermi-Dirac ones. 

We regard this paper to be an initial step of a wide investigation program. As 
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the second step we will introduce new dynamic models with non-local interac- 
tions and quantize them. We also hope to obtain a new tool for studying the prob- 
lem of quantum anomalies. 

1. Poisson brackets associated with R-matrices 

Consider a Poisson bracket in the space C”(M), 

f@g-Cf;g}~C03(~), ~g~Crnw) 3 
and let the Poisson action of a connected and simply connected Lie group G be 
defined on a smooth manifold M. We obtain the natural representation 
(p : o+Der(M, { } ). Here 6 is the Lie algebra of the group G, Der(M, { } ) is the 
Lie algebra of all Poisson vector fields on M. 

Consider a classical R-matrix REA*B, R=r’iXi~Xj, @eE?, where {Xi} is a fixed 
basis of 8. 

Consider the bilinear operator from C”(M) @’ to C”(M), 

f @‘g-ti gh =~(~~~P)RJ(df~dg)ECQD(M) 3 
or 

where Xi f= p( Xi)Jd. 
f @g4 cf; g}R =r”XifXig, (1.1) 

Proposition 1.1. (I) The operator (1.1) defines a Poisson bracket in C”(M). (2) 
The brackets { } and { }Rf orm a Poisson pair, so any linear combination { } o,6 = 
a{ } + b{ }R is a Poisson bracket. 

The first statement is a direct consequence of the Yang-Baxter equation for R. 
Let us prove statement ( 2 ) . 

First check that 

WXhl,+W&, h)+a=O 3 (1.2) 

where 0 means summing of all cyclic permutations. Equality ( 1.2) implies the 
statement. 0 

Consider the chain of equalities 

UXh~,+Kt&J~+~ 

=r”(Xi~g})(Xjh)+r’i{(Xif), h}(Xjg)+r”(Xij){(Xjg), h}+a 

=r”((xiCr;g})(Xjh)+{(x,f),h}(Xjg)-(Xjf){(X,g),h})+~ - 
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Collect similar terms in the last expression, say, those containing Xjh, as a fac- 
tor. We get 

The latter expression equals zero because the Xi are Poisson algebra derivations. 
If the algebra 6 is generated by Hamiltonian fields, then the bracket { , }R and 

consequently any bracket of the family { , }o,6 allows a restriction on each sym- 
plectic leaf of the bracket { , }. 

Example 1. A typical example is given by a manifold M=6* with a Poisson-Lie 
bracket { , }, where 6 is a Lie algebra and R is an R-matrix on this algebra. In this 
case the family { , }O,6 allows restrictions on any symplectic leaf of the bracket 
{ 7 I. 

Example 2. Another typical example is given by the constant bracket { , }, 6 being 
a Lie algebra of quadratic Hamiltonians. If a classical R-matrix is given on 6, 
then the bracket { , }R is quadratic. For example, 

fi=p2/2, fi=pq U.Lfd=20 3 R=f,@f,--.L@f,. 

Then V; g}R=p2cf; g} (if we takef, =p then the R-matrix bracket becomes linear: 
{Pdl~=Pcf;&!H. 

Example 3. Let O,= sl( 2, [R) and let X, Y, H be a fixed Chevalley basis in Q 
( [H, X] =2X, [H, Y] = - 2 Y, [X, Y] = H). Suppose x, y, h are the generators in 
C” (6* ) corresponding to X, Y, H. Consider the Poisson-Lie bracket Cr; g} (5) = 
( [ df; dg] , 5) on 6*. The functions f, = h andfi =x“p (h ) form a two-dimensional 
Lie algebra: cf, ,fi} = 2kf2. The tensor R =fi @fi -f2@f satisfies the classical Yang- 
Baxter equation. In this case the bracket { , }R written in terms of the generators 
x, y, h has the form 

{h, x),z =4k.+y,(h), {h, y),z = -4k-+‘wUO , 

{x, v)R =2k-+(h) . 

Remark. Take R =X@ Y- Y@OX on the algebra 6 = sl( 2, [R). One can easily see 
that the bracket { , }R is a Poisson bracket in C”((5*), although this tensor is not 
a classical R-matrix. The Poisson-Lie bracket { , } and the bracket { , }R form a 
Poisson pair. 

Suppose now that the initial bracket { , } is non-degenerate (for example, it is 
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a restriction of the Poisson-Lie bracket on a symplectic leaf ). Let 1;2 be the cor- 
responding symplectic form: Q(& X,) = u g}, w ere <,-is the Hamiltonian field h 
generated byJ 

For a 2n-dimensional manifold M consider the functional r(f) =jfQ”. This 
functional is central, i.e., it satisfies the condition r( {J; g} ) =0 for anyf; g. Indeed, 

J cr; g}Q”= J L,,gP’= - J ‘&P=o ) 

where L.\- is the Lie derivative along the field X. 
As we have mentioned above, the functional r plays an important role in the 

quantization procedure since it allows one (in some special cases) to consider 
the space L2 ( Q” ) as a space of observables. 

Recall that, when the Poisson bracket is degenerate, then there are no central 
functionals. This is exactly the case for the brackets { , }R. 

Consider the pairing, 

on C-(M). Obviously (f;g)R= - (g,f),+ 

Proposition 1.2. The pairing .f @g+ (J g) R is a cocycle on the algebra C”(M) 
with the Poisson bsacket { , }, i.e., for any f; g, hi C” ( M) the equality 

(d1;g},h>R+({g,h),f>R+({h,S},g>R=o 

holds. 

ProoJ: Apply the functional c to eq. ( 1.2) and obtain the required equation. q 

The following proposition (see ref. [ 51) is an algebraic analogue of this 
statement. 

Proposition 1.3. Let 8 be a Lie algebra with an invariant pairing 

( , ) : B@+k (X@Y+(X, Y)) . 

Then the pairing 

< 3 )R=< 3 )R ((X Y>R=(R(X@Y))) > 

whereR(X@Y)=rU[Xj,X]@[[Xj, Y] androX;@X,isan element of/i%, isaco- 
cycle on the Lie algebra 8, i.e., the relation 

<lx yl,~).+([y,~I,~),+([~,~l, VA?=0 
holds. 
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The proof is similar to that of proposition 1.1. First the equality 

,‘“(( Ixi, [x, y113 [xj9zl)+< [[xiu,,X]~Z]~ [Xj, Y]) 

-m-jJ1, [[xi,yl,zl))+~=o 
is verified. The sum of the second and the third terms and their permutations 
equals zero since the pairing ( , ) is invariant. Cl 

Remark. Note that this statement remains valid if the element rtiXjBX,~A% is 
replaced by an element of A ‘D(S) where D( 8 ) is the derivation algebra of 6. 

It should be emphasized that not all cocycles on the Lie algebra 6 can be rep- 
resented in the form ( , )R with a tensor REA ‘D(6). 

2. Quantization of Poisson brackets associated with R-matrices 

Recall that the first step of a “Poisson bracket quantization” is a deformation 
quantization, i.e., a construction of a family of associative structures in C”(M) 
depending on the Planck parameter fi and satisfying the correspondence principle 

We denote by *,, multiplication corresponding to the parameter fi. Strictly speak- 
ing, the element f*,, g belongs to the space C”(M) [ [ fi ] ] of formal power series 
of A, but we omit this dependence on fi in our notations. We suppose also that the 
functionsf= 1 is a two-sided unit in the deformation algebras. 

In this section we study the problem of simultaneous quantization of the family 
{ > L.6=4 > )+b{ 3 )R, where { , } is a given bracket on the manifold M and { , }R 
is the R-matrix bracket constructed in the previous section. 

Suppose that the deformation quantization for the initial bracket { , } has al- 
ready been constructed. Denote the multiplication in the corresponding associa- 
tive algebra by oA and the space C”(M) equipped with this multiplication by 
C”(M VI). 

Suppose also that the action of the Lie algebra 6 extends to an action on this 
algebra. Thus we get a representation q : B+Der C”(M, en) of 6 in the deriva- 
tion algebra of the algebra C” (44, ofi). 

Consider the series 
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quantizing the given R-matrix in the sense of ref. [ 61 (it is clear that the quantiz- 
ing series of the initial R-matrix is not unique). Here XLY=X;Y’...X? and 
Xfl=Xp ...Xp are elements of the enveloping algebra U( 6) of 8. 

This series satisfies the following conditions: 

Ffi(x,o)=Ffl,(o,m=l 9 

F,(x+ K Z)F,(X Y) =Ffi(X y+z)Ffl(K Z) * 

Consider the map F, : C-(M)*2+C”(M)@2 given by 

FhCf~g)=f~g+lAriiXif~Xjg+ &P,,b(h)Xfff@XPg. (2-l 1 

Here again we write Xfinstead of p( X) JdJ 
Letfeh,,, g= 0 fi F, u@g) . This multiplication can be rewritten as follows: 

f*,*,t,g=fDhg+fVriiXifnh~g+ $BPa.fl(V)XOLJfr*XPge 

Proposition 2.1. The multiplication * A,u is associative and the function f= 1 is the 
unit in Cm(M) *fi.v). 

This proposition will be discussed in section 4. 
We shall write ea.6 instead of *&,$,. In this case we suppose that a, 6, k, VER 

(we write fii and ai if we want the first parameter to be purely imaginary). 
The following proposition is obvious. 

Proposition 2.2. The correspondence principle holds, i.e., 

~*o.bg~fi=O =fgy ;!: (f *o,bg-g*a,bf ,h-‘=cr;&,b > 

so (C” (M, * a.b) is a deformation algebra for the Poisson algebra C” (M, { , }&). 

Remark. Let v=k* in the definition of the associative multiplication *fi,y. Then 

!i: Cf*wg-g*fi,fsf M-‘=cr;d . 

This gives a new quantization for the initial Poisson bracket. 

Now consider a representation 

7 : C”(M, oih)+End( ?‘) [7(f) =A/=AdA)] 

of the associative algebra C” (M, ‘ifi) in a complex Hilbert space Vequipped with 
a pairing ( , ) : V @‘+C such that AJ=AJ. 

Consider a representation v, : Q+End( V) of 8 in the same space such that 
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Here F,, is an endomorphism of the tensor product of two left B-modules defined 
by a formula similar to (2.1) and ev : A@r.~.4v is the evaluation map for the 
operator A and the element U. In section 4 we shall prove the mappingf+AF’ to 
be a representation of C” (M, * o,b). The properties of this representation will be 
expressed in terms of the symmetry S= FE,’ *s*F,,, and the deformed pairing 
( > >s=< 3 >Fm. 

In particular, consider the adjoint representation &,+-of C”(M, oifi), where 
A/g=& iT$. Suppose that the operators A/ are self-adjoint for real valuedk C” (M) 
(with respect to the pairing f @g+J&P’). In this case the pairing deformation 
has the form 

The linear term of this deformation is J R (J@g)Q” (up to a constant) and on 
the space of real functions it coincides with the R-matrix cocycle described in 
section 1. 

Example. It is known that the algebra C”(W, oih) with the multiplication 

is a result of the Weyl quantization of the bracket 

af ag af ag 
cr;g}=-----, (p,q)dR? 

ap aq aq ap 

The reader can easily verify that the operators of the adjoint representation 
satisfy the condition AJ- -AT for the Hilbert pairing f@g-tJf&Y', where 
SZ=dp/\dq. 

Let 8 and R be the same as in example 2 of section 1 and eitherf, =p2/2,fi=pq 
(case 1) or f, =p, f2 =pq (case 2 ) . One can easily see that the Hamiltonian fields 
generated by fi andf, (in,both cases) are derivations of C” (I?‘, 0 ih) and thus we 
can construct, using the above-mentioned method, the deformation quantization 
for the family ai{ , }+b{ , }R, where { , }R=p2{ , } in case 1 and { , }R=p{ , } in 
case 2. 
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Remark. It is possible to consider multi-parameter families of brackets. For ex- 
ample, if there are three Poisson brackets { , }, { , }‘, { , }” forming a Poisson 
triple and any bracket of the family b{ , } ’ + c{ , } ’ is an R-matrix one, then under 
similar assumptions on the quantization of the first bracket, it is possible to in- 
troduce a simultaneous quantization for the family a{ , } + b{ , }’ +c{ , } ” in 
C ao (M). The brackets 

cf;g}= $$ - $$, { , >‘=a{ 9 1, { 7 )“=d 3 > 9 

serve as an example of such a triple. 

3. “S-quantum mechanics”: a general scheme 

The quantum mechanics scheme is based on the hypothesis that observables 
are self-adjoint operators in a complex Hilbert space. The set of all such operators 
is a Lie algebra with the operation A@B+i(AoB-BOA). A trace is defined on a 
dense set of such operators. 

A state is a self-adjoint nuclear positive operator M : V+ V such that tr M= 1. 
The value of an observable A in a state M is measured by tr A.M. A fixed observ- 
able H, which is called a Hamiltonian (or energy), defines the dynamics of other 
observables by the equation (Heisenberg picture) 

dA(t)/dt=(i/~)[H,A(t)] . (3.1) 

We extend some features of this scheme to the “S-quantum mechanics”. (We 
omit some difficult problems, concentrating on the notation of positivity. ) Con-’ 
sider a linear space Vover the field R. Let a symmetry S : I’@*+ I’@* be defined 
in I’@’ and let ( , ) : V@’ -JR be a non-degenerate pairing, satisfying two ax- 
ioms: 

(1) < , > = < , >S (S-symmetry); 
(2) ( , )(I)= ( , )(2)S(‘)S(2) (S-invariance). 
Here and below we write 

S(‘)=S@id S(‘)=id@S, 
( ) )(‘L ( , )&id, ( , )“‘=id@(, ) , 

and so on. To avoid topological problems we suppose dim Vcco and identify V 
and r/“c with the help ofthe pairing ( , ). 

Fix a basis {e;} in K Write (e,, ej) =gijE[R. Denote by I$ the complexification 
of V. Extend the symmetry and the pairing to Vl’ in the usual manner, for ex- 
ample, (ae,,, be, ) = abg,,,, if a, bd. 

Below we use the notation: V e= V; the initial real space is denoted by V,. All 
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objects (operators, tensors) will be considered over Q=. 
A non-degenerate pairing in the space Vallows us to identify P’ with End( V). 

Introduce a homomorphism AN : V-t V (N=aUe,@eiE P’): 

A,e,=a”ei(ej,e,)=a”g,,e,. 

The correspondence N+AN is bijective. So we can introduce an associative alge- 
braic structure in V@ ‘. 

Define the S-trace and the S-conjugation operator on V@“: 

tW= < , h, Adj,N=S( N) . 

Let 

trsAN = trsN, A> = AdjsAN =AAdjsN . 

Obviously Adji = id. 

Proposition 3.1. The following equalities hold: 
( 1 ) trSAL = trSAN; 

The first statement is obvious. The second one is implied by the following 
lemma. 

Lemma 3.2. The equality 
( )( )WS’lL( )( )W93’ 9 3 7 7 

holds on I$‘“. 

(3.2) 

Proof: This relation is implied by the equality 

( ) )W$lL( , )‘I’~“‘) 

which is a reformulation of the S-invariance of the pairing. 0 

The second statement of proposition 3.1 is equivalent to the adjoint operator 
definition. 

Denote by SA(S) the set of all self-adjoint operators, i.e., the operators satis- 
fying the condition A=A*=AdjJ. 

Consider the matrix g”’ inverse to the matrix gij : g”‘g,; = 67, and the “embed- 
ding of the unit” operator 1 +g=g”ei@ej, which is adjoint to the pairing opera- 
tor. The pairing V@“@ VB2 -+@ is defined by the fOmda (~?@f?~,ek@c?l> =gi/gjk- 

Proposition 3.3. The embedding of the unit operator is S-invariant, i.e., the ele- 
ment g=gijei@eJ is central: S(e,@g) =g@e,. 
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Note thatA,=idESA(S). 
Define a symmetry S : End( v) @ 2 + End ( V) @ 2 by identifying End ( V) @ 2 with 

I@’ [we transpose (a@!~) and (cCM) in (aC93b) @I (CM) with the help of the 
operator S(2)S(‘)S(3)S(2)]. 

Remark. In the theory of monoidal quasi-tensor categories the trace in the oper- 
ator algebra is defined independently of any pairing (see ref. [ 31). One can show 
that for an S-invariant, S-symmetric pairing both definitions are equivalent. 
Therefore the notion of the S-trace does not depend upon the pairing. On the 
contrary, the operator Adj depends upon the pairing. 

There exists an operator B such that trJ= tr AB. This operator can be found 
from the equality (e,, Be,) =gqP. 

Note that the quantity tr, id is integer and equals p if S is an even symmetry of 
rank p in the sense of section 5. 

Proposition 3.4. The functional trs is S-central, i.e. tr,AoB=tr,S(A@B), A, 
BoEnd( V). 

We omit a proof of this simple statement. 

Proposition 3.5. The conjugation operator is S-invariant, i.e., S(Adj,@id) 
= (id@Adj,)S. 

This statement is a direct consequence of QYBE. 

Proposition 3.6. The quality 

Adjs(AoB) = 0 (Adj,@Adj,)S(A@B) 

holds. 

Actually, we need to prove that 

s( , >‘2’=( , )(~)(S(~)S(I))(S(~)S(~)S(I)S(Z)) . (3.3) 

Because of the relation S( , ) (2) = ( , )(‘)S(3)S(2)S(‘) (which a is consequence 
of the second property in the definition of the pairing ( , ) ), (3.3) is equivalent 
to the following equality: 

( , >“L( , )(2~(~‘~‘~“‘)(~‘~‘~‘~‘~“‘~‘~‘)(~”’~’~’~’~’) . 

Now, the required equality is implied by the following chain of relations: 
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= ( , > (~)S(~)S(‘)S(~)S(~)S(~)S( 1),9(3) 

= ( , > (~)~(~)S(I)(S(~)S(~)S(~)S(~))S(I) 

= ( )(~)~(~)S(I)S(~)S(~)S(I)= ( )W$U$~)S(I) 
, , 

=( )(2)s(ap)$L( )wp)$2L( )(I) 
3 , , cl 

Proposition 3.7. If A, BESA(S), then A.B+ .S(A@B)ESA(S), and i(A.B- 
.S(A@,B))ESA(S). 

Proof is immediately provided by propositions 3.5 and 3.6. What kinds of op- 
erators AESA(S) should be regarded as Hamiltonians in our theory? In super- 
mathematics this role is played by even self-adjoint operators (due to the even- 
ness of the time variable in the Schrodinger equation). Denote by Z(S) the set 
of all S-self-adjoint S-variant operators, i.e., operators AESA(S) satisfying the 
condition S(A@e,) =e,@A. We consider these operators to be the analogues of 
even operators in “S-mechanics”. 

Consider the dynamic equation (3.1) with the Hamiltonian HEZ(S). The 
commutator [H, A( t) ] can be changed to the S-commutator, i.e., to 
[H,A(f)]s=H~A-~S(H@A), since the relation S(H@A)=A@H holds for 
HEZ(S). 

The dynamics of the observable A ( t ) is expressed by the classical formula 
A(t)=e’nf/~A((0)e-iHf/“. 

Let Spec(H) be the spectrum of the operator HEZ(S) and &Spec (H). De- 
note by V, the eigenspace of Vcorresponding to the eigenvalue rZ. We assume that 
Vis a direct sum, 

Proposition 3.8. S( VA@ V,) = V@ VA. 

Proof Let XE VA, yo V,. Apply the operator id@N to the element S(X@JJ). Talc- 
ing into consideration that His S-invariant we get 

(id@H)S(x@y) =S(Hx@y) =ti(x@y) . 

Since v= @IeSpcc(H) V,, we conclude that S(x@y) = V@ V,. Applying the opera- 
tor H@id to the element S(X@JJ) we get the required statement. 0 
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Thus, we have expanded V@’ into a direct sum of spaces, 
v@= 0 (V,@V,) . 

I,JlaSpec(H) 

Corrolary 3.9. Z~A=A,ESA(S), then NE@~( VA@ VA). 

Proofs of the following statements do not differ from their classical counterparts. 

Proposition 3.10. The subspaces VA and VP (A # p) are orthogonal with respect to 
the pairing ( ,) and, consequently, the pairing ( , ) : VP’ +@ is non-degenerate. 
Moreover, Spec (H) c R. 

Call MESA(S) an H-state if M=ClsSpec(H) alMA, where MAe Vy’, trsMn= 1, 
aAER, aA> 0, CA aA = 1. Obviously, H-states form a convex cone. 

The value of the observable A in the state M is measured by trJ.M. 
Calculate the value of the Hamiltonian H in the state MA. Since the Hamilto- 

nian H is scalar on each V,, H corresponds to the tensor ,lgve; @ ej, where gfei 8 
ej is the tensor that is “inverse” to the bilinear form ( , ) : Vy ’ +@. Hence 
tr,H.M,=il tr,M,=k 

If the “vacuum” state M=Vac is defined for a given quantum system, then we 
can study “correlation” functions of the type: 

(4 (h >-4,WM) =frSAl (4 I-4,(t,,)M. 

4. “S-quantum mechanics”: quasi-classical case 

In section 3 we have presented the general scheme for the “S-quantum mechan- 
ics”. Here we demonstrate that the representationf++End ( V) constructed in 
section 2 is a part of this scheme. 

As was mentioned above, one can construct a map F, : V, @I V,+ V, ($9 VI for 
any two left B-modules V, and V, similarly to (2.1). 

Let V= V, = V, be complex Hilbert spaces equipped with a pairing 
( , ) : V@‘-+@.Fixv=bfiandputS=F;‘~o~F,,whereF;’ isaseriesinvwhich 
is formally inverse to F, and ( , )s= ( , ) F,. 

Proposition 4.1. The following statements hold: 
( 1) S is a YB symmetry; 
(2) the pairing ( , )s is S-invariant and S-symmetric; 
(3) the map f+Ayb is a representation of the algebra C” (M, eavl,); 
(4) AQb =AdjsAFb, where AdjJ=A* for all AEEnd( V) is dejmed by the 
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equality 

(A*ei, ej) = (AZj, Zi), e;E V, Zj@Pi=S,(e;@ej) . 

Prove that S satisfies the QYBE (the unitarity of S is obvious). Let Q be the 
usual permutation in V@ *. Since 

~“(a~“(x8y)~z)=o”‘F”(F,,(x~y)~z), 

the following relation holds: 
s(LFp- ..(‘)oFp =3FJ’ofJ”‘o,F” , 

where 

~F,(x8y8z)=F”(x~F”(yBz))=F,(F”(x~y)~z)). 

In this way St*) and a(‘) are intertwined by jFy. The operators S( ’ ) and cr(‘) 
are intertwined in the same manner. This provides the QYBE for the operator S. 

Proposition 2.1 and statements 2 and 4 of this proposition can be proved in the 
same way. Prove now statement 3. 

Denote by qF the mapf+AF”, i.e., 

~)F(f)U=ev(~~id)F,Cf~~). 

Here p : f+Afis a representation of the algebra C” (M, 0 ih). Then the following 
chain of equalities implies statement 3: 

=ev(@Gd) (a,is,~id)F,(F,(S~g)Bv) 

=ev(mult@id)(@@%id)F,( (F,(f@g)C3v) 

Here “mult” denotes the multiplication operator A@‘B-+AoB. 
Thus the algebra quantizing the brackets { , } is represented by operators 

AT” : V-t V, where V is equipped with symmetry S and the S-symmetric pairing. 
The general scheme of such quantum objects was presented in section 3. It is the 
existence of the operators F, intertwining the standard quantum mechanics and 
“S-quantum mechanics” that provides specific features characterizing the ob- 
jects of the present section. 

S-self-adjoint operators do not form a Lie algebra but they do form an S-Lie 
algebra. This notion was introduced by the first author in ref. [ 71. Let us recall 
it. 
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Definition. A linear space 8 is called an S-Lie algebra if 6 is equipped with a 
symmetry S : 082+Oo2 and a “S-Lie bracket” [ , ] : 6@2-+0, i.e., a map satis- 
fying the conditions 

(1) [ > IS=- [ , ] (S-skew-symmetry); 
(2) [ , ] [ , ](‘)(id+S(1)S(Z)+S(2’S”))=0 (S-Jacobi identity); 
(3) S[ , I(‘)= [ , ](z)S(‘)S(2) (S-invariance). 
A pairing ( , ) : 6 @‘+k is called invariant if it satisfies the following 

conditions: 
(1) ( , >S= ( , > (S-symmetry); 
(2) ( 1 Y’)= ( , ) c2)S(‘)S(2) (S-invariance); 
(3) ( , ) [ , ](‘)-t( , ) [ , ](2)S(*)=0 (B-invariance). 

Consider the S-Lie algebra generated by S-self-adjoint operators AS’. This S- 
Lie algebra is equivalent to the Lie algebra of self-adjoint operators with the stan- 
dard commutator. Recall (see ref. [ 71) that two S-Lie algebras are equivalent if 
they can be intertwined by an operator F= (,F) (the first two diagrams below 
are commutative). 

In this paper the operator F intertwines also the pairings defined on these al- 
gebras and therefore these algebras are U-equivalent in the following sense. 

Two S-Lie algebras equipped with invariant pairings 8, = (S,, [ , ] ,, ( , ) , ) 
and&=(& 1 9 L, ( , >A are unitarily (or U-) equivalent if there exist opera- 
tors ,,F : Oyp -SF”, p>, 0, such that the following diagrams are commutative: 

(we suppose that $= id, , F=id, i.e., 8, coincides with O2 as a linear space). 
The pairing ( , ) 0,6 on the S-algebra generated by S-self-adjoint operators ATb 

is determined by the S-trace, 

Consider a dynamic model with a Hamiltonianj: Let G be a Lie symmetry group 
for this model, 6 be its Lie algebra and ReA26 be an R-matrix. Since fis G- 
invariant and therefore Xf=O for all XEB we obtain A?’ =A?’ =A/ (afi). So 
Spec(A/ (afi) ) =Spec(Ay’), i.e., the intertwining does not change the spectrum 
of a dynamic model if the ‘intertwining group” is the symmetry group of the 
HamiItonian. In the next section we show that the statistical sum of an “S-quan- 
tum oscillator” depends on a PoincarC series of a symmetry S only (an intertwin- 
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ing does not change this series). 
Now we shall quantize the cocycle described in proposition 1.3. 

Proposition 4.2. Let F be the same series as above, quantizing a classical R-matrix 
R of proposition 1.3. Let F,,=id+ ffiR+-.. be above-mentioned series and 
Ffi: Q@‘+B @ 2 be the corresponding operator: 

F,(X~Y)=X~Y+:hR(X~Y)+... . 

Considertheoperators:Sfi=F;‘oooFfi, [, Is= [, ]F,,and( , )s=( , >F+Then 
iI5 is an S-Lie algebra with respect to S and [ , Is and the pairing 
(9 )s:G @‘+ k is invariant. 

The proof is similar to the one above and is left to the reader. 
So an invariant pairing on an S-Lie algebra is the quantum analogue of an R- 

matrix cocycle on an initial Lie algebra 8. 

5. Example: “S-quantum oscillator” 

In this section we construct examples of S-quantum systems without assuming 
S to be quasi-classical. 

Consider a space V over [R equipped with a symmetry S : Y@‘+ V@’ and a 
pairing ( , ) : Vm2 +[R. Let Sand ( , ) satisfying the conditions of section 3. Fix 
a basis {e,} and write ( ei, ej) =gii. Introduce “S-symmetric” and “S-exterior” 
algebras 

A+(V)=T/I-, A-( ?‘)=T/I+ , 

as quotient spaces of the free tensor algebra T= T( V) over the ideals I- = {e@ 
e,--S(ei@ej)} andI+={e;@ej+S(ei@ej)}. 

Consider the PoincarC series 9’* ( t ) = 9’& ( t, V) = Ci, 0 r y’ t i for /if ( V), where 
r g) = dim /i i ( V) and /ii ( V) is the homogeneous part of degree i of/if ( v). For 
S= CJ (0 is an ordinary permutation) Y-(t) is a polynomial of degree n and 
r? = (r) (the “classical” case). 

A symmetry S is called even of rank p if 9?- (t) is a polynomial of degree p and 
rLP)=l. 

In ref. [ 41 it was proved that for any linear space V (dim V= n > 2) and integer 
p such that 2<p< n there exists an even symmetry S : I@‘*+ I@’ of rankp. 

Obviously if pf n, such a symmetry cannot be obtained by deformation of an 
ordinary permutation u. 

Consider two copies of the space Vand denote them by V, (coordinates) and 
V’ (impulses). Regard r= V&J V, to be an S-analogue of phase space. Define a 
symmetry S on Y@’ as follows: 
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where S= (S$i) is the symmetry on the space V@‘. 

Definition. Consider an algebra A equipped with the multiplication 0 : A@‘-+,4 
and the symmetry S : A@‘+AB2. A is S-commutative if oS=S and 
So(‘)= o(“S(“S(‘). An operator ( , }s : A *‘+A is an S-Poisson bracket ifA is an 
S-Lie algebra with respect to ( , Is and the S-Leibnitz equality holds, 

{ ’ , JS” (2)=o{ , )&‘)(id+,‘$(‘)) . 

If there is an involution (complex conjugation) in A, then we require that 
{J gjs =; cr; s}~ holds. 

Consider the algebra A =/i+ ( V) 8@, which is obviously S-commutative. There 
exists a unique Poisson S-bracket in this algebra, which is defined on the genera- 
tors in the following way: 

{qi, 4,}.S={Pi, Pj}.S’O, {Pi, qj}S= -gij, {Si, PjlS=LTij - 

Consider the following real element of A as a Hamiltonian: 
h=g’ip.p.+o’g’jq.q. 

1 J 1 J’ 

This element is S-invariant. Operators Qi and Pi are quantum analogues of the 
“S-classical observables” qi and pi- The operators Qj and Pi commutate according 
to the same formulae as qi and pi. Define a Lie S-bracket: 

[Qk, Q/Is= [f’x> P/1,=0, I&k-, f’h=if&. 
An operator A, can be defined for each element feA by an S-analogue of the 

quantization procedure due to Weyl. We need an operator analogue H=A,, of the 
Hamiltonian h. It is 

H=g”‘PkP,+w’g”‘QkQ, . 

Introduce creation and annihilation operators 

a; = (oQk-iPk)(2wfi)-I”, ak= (coQk+iPk)(2w~)-‘~‘. 

The symmetry acts on these operators in the following way: 

S(ai@aj) =Syak@al, S(a” @ai+) =Sya,+ 63q.t , 

S(ai@aJ+) =Sfaz @a,. 

The Lie S-bracket of the operators a: and ak are 

W, ai%= h ah=O, [ax-, ai+ ls=g, . 
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Express the Hamiltonian H in terms of the operators a: and a,, 

H=ohgij(a,a,+ +a;‘a,)=wAgti(2ai+a,+g,) 

=o.dgii(2a,af -g,,) . 

Consider a quantum system constructed in the Fock S-space @=/i+ ( I’,,)@@. 
Define the actions of the operators a’ and ai in the space @ as follows: 

df =4if; w, =g, , 

a,(-~g)=a;~g+oa)‘)S(fBg) , 

where 0 is the multiplication in the algebra @. The latter equality means that the 
a, are derivations of @. 

Define a pairing ( , ) : @@‘+@ on 0 as follows: 

(jig>= :1,1>=1 
i 

f~@(‘), ge W’, i#j, 

i!( . )...( 1 )(i)(f8g), i=j> 1. 

The reader can easily prove that this pairing is non-degenerate, S-symmetric 
and S-invariant and that the operators a’ are S-adjoint to ai. 

Therefore the operators P, and Qi are S-self-adjoint. Since the operator His an 
S-symmetric expression on P, and Q; it is S-self-adjoint as well. The eigenvalues 
of this operator are 

L,v=2N&i+wfip, N=O, 1, ..v , 

where p is the rank of the symmetry S. The eigenspace corresponding to the ei- 
genvalue I!v coincides with @ (“) This follows from the fact that if&@(N) then . 
g”a F a,.f= A$ 

The tensor 160 1 is the vacuum state for the Hamiltonian H. 
The statistical sum for H is of the form 

2 dim @ (r\‘)e-l.~/br=e--c~flp/hBr~+ (t) 3 

where T is a temperature, k, the Boltzmann constant and t denotes e-2’Uh”Xr. 
Thus the statistical sum for the energy operator H of this S-quantum system is 

a rational [since 9+ ( t) = ~9’~ ( - t) - ’ ] function of e -‘JJ”~~ and differs from the 
“classical” one. 

The authors are very indebted to Professors A. Sosinsky, I. Krasilshchik and A. 
Vinogradov for valuable suggestions and discussions. 
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